Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity.
نویسندگان
چکیده
The blood-brain barrier (BBB) is a physical and metabolic barrier between the brain and the systemic circulation, which functions to protect the brain from circulating drugs, toxins, and xenobiotics. ATP-dependent multidrug transporters such as P-glycoprotein (Pgp; ABCB1), which are found in the apical (luminal) membranes of brain capillary endothelial cells, are thought to play an important role in BBB function by limiting drug penetration into the brain. More recently, the multidrug resistance protein MRP2 (ABCC2) has been found in the luminal surface of brain capillary endothelium of different species, including humans. In endothelial cells from patients with drug-resistant epilepsy, MRP2 was shown to be overexpressed, indicating that it may be critically involved in multidrug resistance of such patients. However, the role of MRP2 in drug disposition into the brain is defined poorly. Herein, we used different strategies to study the contribution of MRP2 to BBB function. First, the MRP inhibitor probenecid was shown to increase extracellular brain levels of the major antiepileptic drug phenytoin in rats, indicating that phenytoin is a substrate of MRP2 in the BBB. This was substantiated by using MRP2-deficient TR- rats, in which extracellular brain levels of phenytoin were significantly higher compared with the normal background strain. In the kindling model of epilepsy, coadministration of probenecid significantly increased the anticonvulsant activity of phenytoin. In kindled MRP2-deficient rats, phenytoin exerted a markedly higher anticonvulsant activity than in normal rats. These data indicate that MRP2 substantially contributes to BBB function.
منابع مشابه
Coordinated nuclear receptor regulation of the efflux transporter, Mrp2, and the phase-II metabolizing enzyme, GSTpi, at the blood-brain barrier.
Xenobiotic efflux pumps at the blood-brain barrier are critical modulators of central nervous system pharmacotherapy. We previously found expression of the ligand-activated nuclear receptor, pregnane X receptor (PXR), in rat brain capillaries, and showed increased expression and transport activity of the drug efflux transporter, P-glycoprotein, in capillaries exposed to PXR ligands (pregnenolon...
متن کاملDistribution and functional activity of P-glycoprotein and multidrug resistance-associated proteins in human brain microvascular endothelial cells in hippocampal sclerosis.
Multidrug resistance protein, also referred as P-glycoprotein (P-gp, MDR1; ABCB1) and multidrug resistance-associated protein (MRP) 1 (ABCC1) and 2 (ABCC2) are, thus far, candidates to cause antiepileptic drug (AED) resistance epilepsy. In this study, we investigated P-gp, MRP1 and MRP2 expression, localization and functional activity on cryosections and isolated human brain-derived microvascul...
متن کاملDexamethasone increases expression and activity of multidrug resistance transporters at the rat blood-brain barrier.
Brain edema is an important factor leading to morbidity and mortality associated with primary brain tumors. Dexamethasone, a synthetic glucocorticoid, is routinely prescribed with antineoplastic agents to alleviate pain associated with chemotherapy and reduce intracranial pressure. We investigated whether dexamethasone treatment increased the expression and activity of multidrug resistance (MDR...
متن کاملQuantitative in vivo microdialysis study on the influence of multidrug transporters on the blood-brain barrier passage of oxcarbazepine: concomitant use of hippocampal monoamines as pharmacodynamic markers for the anticonvulsant activity.
Various antiepileptic drugs were shown to be substrates for multidrug transporters at the level of the blood-brain barrier. These ATP-dependent efflux pumps actively limit brain accumulation of xenobiotics and drugs. Intrahippocampal oxcarbazepine perfusion in rat was previously shown to exert anticonvulsant effects associated with increases in extracellular dopamine and serotonin levels. In co...
متن کاملValproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays.
The antiepileptic drug valproic acid (VPA) is widely used in the treatment of epilepsy, bipolar disorders, and migraine. However, rather high doses are required for the clinical effects of VPA, which is due to its relatively inefficient delivery to the brain. The poor brain distribution of VPA is thought to reflect an asymmetric transport system at the blood-brain barrier (BBB). Based on recent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 306 1 شماره
صفحات -
تاریخ انتشار 2003